Assignment 3

1. (Revised) Establish the identity

$$
\sin x=\frac{2}{\pi}-\frac{4}{\pi}\left(\frac{\cos 2 x}{3}+\frac{\cos 4 x}{15}+\frac{\cos 6 x}{35}+\frac{\cos 8 x}{48}+\cdots\right), \quad x \in[0, \pi] .
$$

How to explain an odd function is now expressed as the sum of even functions?
2. Show that there is a countable subset of $C[a, b]$ such that for each $f \in C[a, b]$, there is some $\varepsilon>0$ such that $\|f-g\|_{\infty}<\varepsilon$ for some g in this set. Suggestion: Take this set to be the collection of all polynomials whose coefficients are rational numbers.
3. Let f be continuously on $[a, b] \times[c, d]$. Show that for each $\varepsilon>0$, there exists a polynomial $p=p(x, y)$ so that

$$
\|f-p\|_{\infty}<\varepsilon, \quad \text { in }[a, b] \times[c, d] .
$$

In fact, this result holds in arbitrary dimension.
4. Let $\left\{\varphi_{k}\right\}, k \geq 1$, be an orthonormal set $R[a, b]$. Show that for every $f \in R[a, b]$,

$$
\sum_{k}<f, \varphi_{k}>_{2}^{2} \leq \int_{a}^{b} f^{2}
$$

This is called Bessel inequality.
5. Same as in the previous problem but now the index set \mathcal{A} could be arbitrary, for instance, an uncountable set. Show that for each $f \in R[a, b]$, there exists a countable subset \mathcal{B} from the index set such that $<f, \varphi_{\alpha}>_{2}=0$, for all $\alpha \in \mathcal{A} \backslash \mathcal{B}$. Hint: Show that the set $\left\{\beta \in \mathcal{A}:<f, \varphi_{\alpha}>_{2} \geq 1 / k\right\}$ is a finite set for each $k \geq 1$.
6. (a) Let S be the vector subspace in $C[0,1]$ spanned by the polynomials $1, x$ and x^{2}. Find an orthonormal set in S which spans S.
(b) Find the quadratic polynomial that minimizing the L^{2}-distance from $1 /(1+x)$ to S.
7. The Legendre polynomials are given by

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}\left[\left(x^{2}-1\right)^{n}\right]}{d x^{n}}, \quad n \geq 0
$$

(a) Write down $P_{0}, \cdots P_{4}$.
(b) Show that

$$
\left\{\sqrt{\frac{2 n+1}{2}} P_{n}\right\}_{n=0}^{\infty}
$$

forms an orthonormal set in $R[-1,1]$.
(c) Verify that each P_{n} is a solution to the differential equation

$$
\left(\left[\left(1-x^{2}\right)\right] y^{\prime}\right)^{\prime}+n(n+1) y=0
$$

8. Let $f, g \in R_{2 \pi}$. Show that

$$
\int_{-\pi}^{\pi} f g=2 \pi a_{0} c_{0}+\pi \sum_{n=1}^{\infty}\left(a_{n} c_{n}+b_{n} d_{n}\right)
$$

where a_{n}, b_{n} and c_{n}, d_{n} are respectively the Fourier coefficients of f and g.
9. Establish the following identities:
(a)

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96}
$$

(b)

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{6}}=\frac{\pi^{6}}{960}
$$

(c)

$$
\sum_{n=0}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

Hint: Use the function $f(x)=|x|$ and the odd function $g(x)=x(\pi-x)$.

