Assignment 3

1. (Revised) Establish the identity

$$\sin x = \frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos 2x}{3} + \frac{\cos 4x}{15} + \frac{\cos 6x}{35} + \frac{\cos 8x}{48} + \cdots \right), \quad x \in [0, \pi].$$

How to explain an odd function is now expressed as the sum of even functions?

- 2. Show that there is a countable subset of C[a, b] such that for each $f \in C[a, b]$, there is some $\varepsilon > 0$ such that $||f g||_{\infty} < \varepsilon$ for some g in this set. Suggestion: Take this set to be the collection of all polynomials whose coefficients are rational numbers.
- 3. Let f be continuously on $[a, b] \times [c, d]$. Show that for each $\varepsilon > 0$, there exists a polynomial p = p(x, y) so that

$$\left\|f-p\right\|_{\infty} < \varepsilon, \quad \text{in } [a,b] \times [c,d].$$

In fact, this result holds in arbitrary dimension.

4. Let $\{\varphi_k\}, k \ge 1$, be an orthonormal set R[a, b]. Show that for every $f \in R[a, b]$,

$$\sum_{k} < f, \varphi_k >_2^2 \le \int_a^b f^2.$$

This is called Bessel inequality.

- 5. Same as in the previous problem but now the index set \mathcal{A} could be arbitrary, for instance, an uncountable set. Show that for each $f \in R[a, b]$, there exists a countable subset \mathcal{B} from the index set such that $\langle f, \varphi_{\alpha} \rangle_2 = 0$, for all $\alpha \in \mathcal{A} \setminus \mathcal{B}$. Hint: Show that the set $\{\beta \in \mathcal{A} : \langle f, \varphi_{\alpha} \rangle_2 \geq 1/k\}$ is a finite set for each $k \geq 1$.
- 6. (a) Let S be the vector subspace in C[0, 1] spanned by the polynomials 1, x and x^2 . Find an orthonormal set in S which spans S.
 - (b) Find the quadratic polynomial that minimizing the L^2 -distance from 1/(1+x) to S.
- 7. The Legendre polynomials are given by

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n \lfloor (x^2 - 1)^n \rfloor}{dx^n}, \quad n \ge 0$$

- (a) Write down $P_0, \cdots P_4$.
- (b) Show that

$$\left\{\sqrt{\frac{2n+1}{2}} P_n\right\}_{n=0}^{\infty}$$

forms an orthonormal set in R[-1, 1].

(c) Verify that each P_n is a solution to the differential equation

$$([(1-x^2)]y')' + n(n+1)y = 0.$$

8. Let $f, g \in R_{2\pi}$. Show that

$$\int_{-\pi}^{\pi} fg = 2\pi a_0 c_0 + \pi \sum_{n=1}^{\infty} (a_n c_n + b_n d_n),$$

where a_n, b_n and c_n, d_n are respectively the Fourier coefficients of f and g.

9. Establish the following identities:

(a)

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96},$$
(b)

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^6} = \frac{\pi^6}{960},$$
(c)

$$\sum_{n=0}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}.$$

Hint: Use the function f(x) = |x| and the odd function $g(x) = x(\pi - x)$.